Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.338
Filtrar
1.
Nature ; 628(8009): 746-751, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38658682

RESUMEN

The valley degree of freedom1-4 of electrons in materials promises routes towards energy-efficient information storage with enticing prospects for quantum information processing5-7. Current challenges in utilizing valley polarization are symmetry conditions that require monolayer structures8,9 or specific material engineering10-13, non-resonant optical control to avoid energy dissipation and the ability to switch valley polarization at optical speed. We demonstrate all-optical and non-resonant control over valley polarization using bulk MoS2, a centrosymmetric material without Berry curvature at the valleys. Our universal method utilizes spin angular momentum-shaped trefoil optical control pulses14,15 to switch the material's electronic topology and induce valley polarization by transiently breaking time and space inversion symmetry16 through a simple phase rotation. We confirm valley polarization through the transient generation of the second harmonic of a non-collinear optical probe pulse, depending on the trefoil phase rotation. The investigation shows that direct optical control over the valley degree of freedom is not limited to monolayer structures. Indeed, such control is possible for systems with an arbitrary number of layers and for bulk materials. Non-resonant valley control is universal and, at optical speeds, unlocks the possibility of engineering efficient multimaterial valleytronic devices operating on quantum coherent timescales.


Asunto(s)
Disulfuros , Molibdeno , Molibdeno/química , Disulfuros/química , Electrones , Electrónica/instrumentación , Fenómenos Ópticos
2.
J Chromatogr A ; 1722: 464843, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38574599

RESUMEN

Reversed-phase high performance liquid chromatography (RP-HPLC) is the most widely used chromatographic method. In addition to hydrophobic interactions, additional interactions such as electrostatic interactions may participate in the retention behaviour of an analyte. This makes it possible to use RP-HPLC for many types of analyte. We describe a simple method for separating inorganic anions on a C18 column, in which retention of inorganic anions is almost entirely due to electrostatic interactions. This leads to rapid separations as well as higher theoretical plate numbers. We used 2 mM phosphoric acid containing a low concentration of disodium molybdate as the mobile phase, which allows UV detection of non-UV-absorbing anions. With this method, we determined eight inorganic anions including several non-UV-absorbing anions photometrically at 220 nm. The detection limits of the examined eight inorganic anions calculated at a signal-to-noise ratio of 3 were between 0.3 and 10 µM. The detector response was linear over three orders of magnitude of inorganic anion concentration. The proposed RP-HPLC/UV method was successfully applied to determine inorganic anions in some water samples.


Asunto(s)
Aniones , Cromatografía de Fase Inversa , Molibdeno , Ácidos Fosfóricos , Aniones/química , Molibdeno/química , Ácidos Fosfóricos/química , Cromatografía de Fase Inversa/métodos , Cromatografía Líquida de Alta Presión/métodos , Límite de Detección
3.
Mikrochim Acta ; 191(5): 262, 2024 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-38613581

RESUMEN

Rapid and sensitive detection of carcinoembryonic antigen (CEA) is of great significance for cancer patients. Here, molybdenum (Mo) was doped into bismuth oxide (Bi2O3) by one-pot hydrothermal method forming porous tremella Bi2MoO6 nanocomposites with a larger specific surface area than the spherical structure. Then, a new kind of hydrangea-like TiO2/Bi2MoO6 porous nanoflowers (NFs) was prepared by doping titanium into Bi2MoO6, where titanium dioxide (TiO2) grew in situ on the surface of Bi2MoO6 nanoparticles (NPs). The hydrangea-like structure provides larger specific surface area, higher electron transfer ability and biocompatibility as well as more active sites conducive to the attachment of anti-carcinoembryonic antigen (anti-CEA) to TiO2/Bi2MoO6 NFs. A novel label-free electrochemical immunosensor was then constructed for the quantitative detection of CEA using TiO2/Bi2MoO6 NFs as sensing platform, showing a good linear relationship with CEA in the concentration range 1.0 pg/mL ~ 1.0 mg/mL and a detection limit of 0.125 pg/mL (S/N = 3). The results achieved with the designed immunosensor are comparable with many existing immunosensors used for the detection of CEA in real samples.


Asunto(s)
Técnicas Biosensibles , Bismuto , Hydrangea , Molibdeno , Humanos , Biomarcadores de Tumor , Antígeno Carcinoembrionario , Porosidad , Inmunoensayo
4.
Water Sci Technol ; 89(7): 1860-1878, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38619908

RESUMEN

The activated persulfate (PS) process could produce sulfate radical (SO4·-) and rapidly degrade organic pollutants. The application of Fe3O4 as a promising PS activator was limited due to the rapid conversion of Fe2+ to Fe3+ on its surface. Mo4+ on MoS2 surface could be used as a reducing site to convert Fe3+ to Fe2+, but the separation and recovery of MoS2 was complex. In this study, MoS2/Fe3O4 was prepared to accelerate the Fe3+/Fe2+ cycle on Fe3O4 surface and achieved efficient separation of MoS2. The results showed that MoS2/Fe3O4 was more effective for PS activation compared to Fe3O4 or MoS2, with a removal efficiency of 91.8% for 20 mg·L-1 tetracycline (TC) solution under the optimal conditions. Fe2+ and Mo4+ on MoS2/Fe3O4 surface acted as active sites for PS activation with the generation of SO4•-, •OH, •O2-, and 1O2. Mo4+ acted as an electron donor to promote the Fe3+/Fe2+ cycling and thus improved the PS activation capability of MoS2/Fe3O4. The degradation pathways of TC were inferred as hydroxylation, ketylation of dimethylamino group and C-N bond breaking. This study provided a promising activated persulfate-based advanced oxidation process for the efficient degradation of TC by employing MoS2/Fe3O4 as an effective activator.


Asunto(s)
Molibdeno , Contaminantes Químicos del Agua , Tetraciclina/análisis , Oxidación-Reducción , Antibacterianos , Fenómenos Magnéticos , Contaminantes Químicos del Agua/química
5.
Anal Chim Acta ; 1304: 342558, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38637055

RESUMEN

Quorum sensing signal molecule is an important biomarker released by some microorganisms, which can regulate the adhesion and aggregation of marine microorganisms on the surface of engineering facilities. Thus, it is significant to exploit a convenient method that can effectively monitor the formation and development of marine biofouling. In this work, an advanced photoelectrochemical (PEC) aptamer biosensing platform was established and firstly applied for the rapid and ultrasensitive determination of N-(3-Oxodecanoyl)-l-homoserine lactone (3-O-C10-HL) released from marine fouling microorganism Ponticoccus sp. PD-2. The visible-light-driven Bi2WO6/Bi2S3 heterojunction derived from metal-organic frameworks (MOFs) CAU-17 and self-screened aptamer were employed as the photoactive materials and bioidentification elements, respectively. Appropriate amount of MoS2 quantum dots (QDs) conjugated with single-stranded DNA were introduced by hybridization to enhance the photocurrent response of the PEC biosensor. The self-screening aptamer can specifically recognize 3-O-C10-HL, accompanied by increasing the steric hindrance and forcing MoS2 QDs to leave the electrode surface, resulting in an obvious reduction of photocurrent and achieving a dual-inhibition signal amplification effect. Under the optimized conditions, the photocurrent response of PEC aptasensor was linear with 3-O-C10-HL concentration from 1 nM to 10 µM, and the detection limit was as low as 0.26 nM. The detection strategy also showed a high reproducibility, superior specificity and good stability. This work not only provides a simple, rapid and ultrasensitive PEC aptamer biosensing strategy for monitoring quorum sensing signal molecules in marine biofouling, but also broadens the application of MOFs-based heterojunctions in PEC sensors.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Técnicas Electroquímicas/métodos , Reproducibilidad de los Resultados , Molibdeno , Percepción de Quorum , Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Límite de Detección
6.
Opt Express ; 32(6): 10033-10045, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38571224

RESUMEN

Fiber optic interferometry combined with recognizing elements has attracted intensive attention for the development of different biosensors due to its superior characteristic features. However, the immobilization of sensing elements alone is not capable of low-concentration detection due to weak interaction with the evanescent field of the sensing transducer. The utilization of different 2D materials with high absorption potential and specific surface area can enhance the intensity of the evanescent field and hence the sensitivity of the sensor. Here, a biosensor has been fabricated using an inline hetero fiber structure of photonic crystal fiber (PCF) and single-mode fiber (SMF) functionalized with a nanocomposite of molybodenum di-sulfide (MoS2) and molecular imprinting polymer (MIP) to detect trace levels of bovine serum albumin (BSA). The sensor showed a wide dynamic detection range with a high sensitivity of 2.34 × 107 pm/µg L-1. It shows working potential over a wide pH range with a subfemtomolar detection limit. The compact size, easy fabrication, stable structure, long detection range, and high sensitivity of this sensor would open a new path for the development of different biosensors for online and remote sensing applications.


Asunto(s)
Impresión Molecular , Nanocompuestos , Polímeros/química , Molibdeno , Tecnología de Fibra Óptica
7.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 389-394, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38660841

RESUMEN

OBJECTIVE: To investigate the effects of elesclomol-Cu (ES-Cu) on the proliferation and cuproptosis of human acute myeloid leukemia (AML) cells. METHODS: The effects of ES-Cu on the proliferation of AML cells and the AML cells pre-treated with ammonium tetrathiomolybdate (TTM) were examined by CCK-8 assay. The Calcein/PI kit was used to detected the changes in activity and cytotoxicity of AML cells induced by ES-Cu. Flow cytometry and Cytation3 fully automated cell imaging multifunctional detection system were used to analyze DCFH-DA fluorescence intensity, so as to determine the level of reactive oxygen species (ROS). The GSH and GSSG detection kits were used to measure the intracellular GSH content. Western blot was used to detected the expression of cuproptosis-related proteins ATP7B, FDX1, DLAT and DPYD. RESULTS: ES-Cu inhibited the proliferation of Kasumi-1 and HL-60 cells in a concentration-dependent manner (r Kasumi-1=-0.99, r HL-60=-0.98). As the concentration of ES-Cu increased, the level of intracellular ROS also increased (P <0.01-0.001). TTM could significantly reverse the inhibitory effect of ES-Cu on cell proliferation and its promoting effect on ROS. With the increase of ES-Cu concentration, the content of GSH was decreased (r =-0.98), and Western blot showed that the protein expressions of ATP7B, FDX1, DLAT and DPYD were significantly reduced (P <0.05). CONCLUSION: ES-Cu can induce cuproptosis in AML cells, which provides a new idea for the treatment of AML.


Asunto(s)
Proliferación Celular , Hidrazinas , Leucemia Mieloide Aguda , Molibdeno , Especies Reactivas de Oxígeno , Humanos , Proliferación Celular/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Células HL-60 , Línea Celular Tumoral , Cobre/farmacología
8.
Sci Rep ; 14(1): 8651, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622233

RESUMEN

In this study, the multifaceted toxicity induced by high doses of the essential trace element molybdenum in Allium cepa L. was investigated. Germination, root elongation, weight gain, mitotic index (MI), micronucleus (MN), chromosomal abnormalities (CAs), Comet assay, malondialdehyde (MDA), proline, superoxide dismutase (SOD), catalase (CAT) and anatomical parameters were used as biomarkers of toxicity. In addition, detailed correlation and PCA analyzes were performed for all parameters discussed. On the other hand, this study focused on the development of a two hidden layer deep neural network (DNN) using Matlab. Four experimental groups were designed: control group bulbs were germinated in tap water and application group bulbs were germinated with 1000, 2000 and 4000 mg/L doses of molybdenum for 72 h. After germination, root tips were collected and prepared for analysis. As a result, molybdenum exposure caused a dose-dependent decrease (p < 0.05) in the investigated physiological parameter values, and an increase (p < 0.05) in the cytogenetic (except MI) and biochemical parameter values. Molybdenum exposure induced different types of CAs and various anatomical damages in root meristem cells. Comet assay results showed that the severity of DNA damage increased depending on the increasing molybdenum dose. Detailed correlation and PCA analysis results determined significant positive and negative interactions between the investigated parameters and confirmed the relationships of these parameters with molybdenum doses. It has been found that the DNN model is in close agreement with the actual data showing the accuracy of the predictions. MAE, MAPE, RMSE and R2 were used to evaluate the effectiveness of the DNN model. Collective analysis of these metrics showed that the DNN model performed well. As a result, it has been determined once again that high doses of molybdenum cause multiple toxicity in A. cepa and the Allium test is a reliable universal test for determining this toxicity. Therefore, periodic measurement of molybdenum levels in agricultural soils should be the first priority in preventing molybdenum toxicity.


Asunto(s)
Allium , Molibdeno/toxicidad , Raíces de Plantas , Meristema , Cebollas/fisiología , Aberraciones Cromosómicas
9.
PLoS One ; 19(4): e0297825, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38598533

RESUMEN

This study demonstrates the effect of nitrogen doping on the surface state densities (Nss) of monolayer MoS2 and its effect on the responsivity and the response time of the photodetector. Our experimental results shows that by doping monolayer MoS2 by nitrogen, the surface state (Nss) increases thereby increasing responsivity. The mathematical model included in the paper supports the relation of photocurrent gain and its dependency on trap level which states that the increasing the trap density increases the photocurrent gain and the same is observed experimentally. The experimental results at room temperature revealed that nitrogen doped MoS2 have a high NSS of 1.63 X 1013 states/m2/eV compared to undoped MoS2 of 4.2 x 1012 states/m2/eV. The increase in Nss in turn is the cause for rise in trap states which eventually increases the value of photo responsivity from 65.12 A/W (undoped MoS2) to 606.3 A/W (nitrogen doped MoS2). The response time calculated for undoped MoS2 was 0.85 sec and for doped MoS2 was 0.35 sec. Finally, to verify the dependence of surface states on the responsivity, the surface states were varied by varying temperature and it was observed that upon increment in temperature, the surface states decreases which causes the responsivity values also to decrease.


Asunto(s)
Ligando de CD40 , Molibdeno , Ingeniería , Nitrógeno , Tiempo de Reacción
10.
Carbohydr Polym ; 335: 122073, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38616095

RESUMEN

Breast cancer remains one of the most intractable diseases, especially the malignant form of metastasis, with which the cancer cells are hard to track and eliminate. Herein, the common known carbohydrate polymer chitosan (CS) was innovatively used as a shelter for the potent tumor-killing agent. The designed nanoparticles (NPs) not only enhance the solubility of hydrophobic paclitaxel (PTX), but also provide a "hide" effect for cytotoxic PTX in physiological condition. Moreover, coupled with the photothermal (PTT) properties of MoS2, results in a potent chemo/PTT platform. The MoS2@PTX-CS-K237 NPs have a uniform size (135 ± 17 nm), potent photothermal properties (η = 31.5 %), and environment-responsive (low pH, hypoxia) and near infrared (NIR) laser irradiation-triggered PTX release. Through a series of in vitro and in vivo experiments, the MoS2@PTX-CS-K237 showed high affinity and specificity for breast cancer cells, impressive tumor killing capacity, as well as the effective inhibitory effect of metastasis. Benefit from the unique optical properties of MoS2, this multifunctional nanomedicine also exhibited favorable thermal/PA/CT multimodality imaging effect on tumor-bearing mice. The system developed in this work represents the advanced design concept of hierarchical stimulus responsive drug release, and merits further investigation as a potential nanotheranostic platform for clinical translation.


Asunto(s)
Quitosano , Neoplasias , Animales , Ratones , Molibdeno , Nanomedicina , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Imagen Multimodal
11.
Lett Appl Microbiol ; 77(4)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38573838

RESUMEN

Seleniivibrio woodruffii strain S4T is an obligate anaerobe belonging to the phylum Deferribacterota. It was isolated for its ability to respire selenate and was also found to respire arsenate. The high-quality draft genome of this bacterium is 2.9 Mbp, has a G+C content of 48%, 2762 predicted genes of which 2709 are protein-coding, and 53 RNA genes. An analysis of the genome focusing on the genes encoding for molybdenum-containing enzymes (molybdoenzymes) uncovered a remarkable number of genes encoding for members of the dimethylsulfoxide reductase family of proteins (DMSOR), including putative reductases for selenate and arsenate respiration, as well as genes for nitrogen fixation. Respiratory molybdoenzymes catalyze redox reactions that transfer electrons to a variety of substrates that can act as terminal electron acceptors for energy generation. Seleniivibrio woodruffii strain S4T also has essential genes for molybdate transporters and the biosynthesis of the molybdopterin guanine dinucleotide cofactors characteristic of the active centers of DMSORs. Phylogenetic analysis revealed candidate respiratory DMSORs spanning nine subfamilies encoded within the genome. Our analysis revealed the untapped potential of this interesting microorganism and expanded our knowledge of molybdoenzyme co-occurrence.


Asunto(s)
Arseniatos , Bacterias , Genómica , Arseniatos/metabolismo , Filogenia , Ácido Selénico , Oxidación-Reducción , Molibdeno
12.
Wei Sheng Yan Jiu ; 53(2): 294-299, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38604967

RESUMEN

OBJECTIVE: To establish an analytical method for determining the migration of 24 elements in Yixing clay pottery in 4% acetic acid simulated solution by inductively coupled plasma mass spectrometry. METHODS: Four types of Yixing clay pottery, including Yixing clay teapot, Yixing clay kettle, Yixing clay pot, and Yixing clay electric stew pot, were immersed in 4% acetic acid as a food simulant for testing. The migration amount of 24 elements in the migration solution was determined using inductively coupled plasma mass spectrometry. RESULTS: Lithium, magnesium, aluminum, iron, and barium elements with a mass concentration of 1000 µg/L; Lead, cadmium, total arsenic, chromium, nickel, copper, vanadium, manganese, antimony, tin, zinc, cobalt, molybdenum, silver, beryllium, thallium, titanium, and strontium elements within 100 µg/L there was a linear relationship within, the r value was between 0.998 739 and 0.999 989. Total mercury at 5.0 µg/L, there was a linear relationship within, the r value of 0.995 056. The detection limit of the elements measured by this method was between 0.5 and 45.0 µg/L, the recovery rate was 80.6%-108.9%, and the relative standard deviation was 1.0%-4.8%(n=6). A total of 32 samples of four types of Yixing clay pottery sold on the market, including teapots, boiling kettles, casseroles, and electric stewing pots, were tested. It was found that the migration of 16 elements, including beryllium, titanium, chromium, nickel, cobalt, zinc, silver, cadmium, antimony, total mercury, thallium, tin, copper, total arsenic, molybdenum, and lead, were lower than the quantitative limit. The element with the highest migration volume teapot was aluminum, magnesium, and barium; The kettle was aluminum and magnesium; Casserole was aluminum, magnesium, and lithium; The electric stew pot was aluminum. CONCLUSION: This method is easy to operate and has high accuracy, providing an effective and feasible detection method for the determination and evaluation of element migration in Yixing clay pottery.


Asunto(s)
Arsénico , Mercurio , Oligoelementos , Cobre , Molibdeno/análisis , Níquel , Arcilla , Magnesio , Aluminio/análisis , Cadmio/análisis , Bario/análisis , Titanio/análisis , Plata/análisis , Berilio/análisis , Estaño/análisis , Arsénico/análisis , Litio/análisis , Antimonio/análisis , Talio/análisis , Zinc , Cromo , Cobalto/análisis , Mercurio/análisis , Espectrometría de Masas , Acetatos , Oligoelementos/análisis
13.
J Nanobiotechnology ; 22(1): 85, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429826

RESUMEN

BACKGROUND: Impaired collateral formation is a major factor contributing to poor prognosis in type 2 diabetes mellitus (T2DM) patients with atherosclerotic cardiovascular disease. However, the current pharmacological treatments for improving collateral formation remain unsatisfactory. The induction of endothelial autophagy and the elimination of reactive oxygen species (ROS) represent potential therapeutic targets for enhancing endothelial angiogenesis and facilitating collateral formation. This study investigates the potential of molybdenum disulfide nanodots (MoS2 NDs) for enhancing collateral formation and improving prognosis. RESULTS: Our study shows that MoS2 NDs significantly enhance collateral formation in ischemic tissues of diabetic mice, improving effective blood resupply. Additionally, MoS2 NDs boost the proliferation, migration, and tube formation of endothelial cells under high glucose/hypoxia conditions in vitro. Mechanistically, the beneficial effects of MoS2 NDs on collateral formation not only depend on their known scavenging properties of ROS (H2O2, •O2-, and •OH) but also primarily involve a molecular pathway, cAMP/PKA-NR4A2, which promotes autophagy and contributes to mitigating damage in diabetic endothelial cells. CONCLUSIONS: Overall, this study investigated the specific mechanism by which MoS2 NDs mediated autophagy activation and highlighted the synergy between autophagy activation and antioxidation, thus suggesting that an economic and biocompatible nano-agent with dual therapeutic functions is highly preferable for promoting collateral formation in a diabetic context, thus, highlighting their therapeutic potential.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Humanos , Ratones , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Células Endoteliales/metabolismo , Molibdeno/farmacología , Molibdeno/uso terapéutico , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Peróxido de Hidrógeno/metabolismo , Autofagia
14.
Environ Sci Pollut Res Int ; 31(18): 27403-27415, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38512568

RESUMEN

The critical impact of sodium-doped molybdenum (MoNa) in shaping the MoSe2 interfacial layer, influencing the electrical properties of CIGSe/Mo heterostructures, and achieving optimal MoSe2 formation conditions, leading to improved hetero-contact quality. Notably, samples with a 600-nm-thick MoNa layer demonstrate the highest resistivity (73 µΩcm) and sheet resistance (0.45 Ω/square), highlighting the substantial impact of MoNa layer thickness on electrical conductivity. Controlled sodium diffusion through MoNa layers is essential for achieving desirable electrical characteristics, influencing Na diffusion rates, grain sizes, and overall morphology, as elucidated by EDX and FESEM analyses. Additionally, XRD results provide insights into the spontaneous peeling-off phenomenon, with the sample featuring a ~ 600-nm MoNa layer displaying the strongest diffraction peak and the largest crystal size, indicative of enhanced Mo to MoSe2 conversion facilitated by sodium presence. Raman spectra further confirm the presence of MoSe2, with its thickness correlating with MoNa layer thickness. The observed increase in resistance and decrease in conductivity with rising MoSe2 layer thickness underscore the critical importance of optimal MoSe2 formation for transitioning from Schottky to ohmic contact in CIGSe/Mo heterostructures. Ultimately, significant factors to the advancement of CIGSe thin-film solar cell production are discussed, providing nuanced insights into the interplay of MoNa and MoSe2, elucidating their collective impact on the electrical characteristics of CIGSe/Mo heterostructures.


Asunto(s)
Molibdeno , Sodio , Molibdeno/química , Sodio/química , Conductividad Eléctrica
15.
Acta Biomater ; 179: 300-312, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38518865

RESUMEN

Deep tissue bacterial infections, especially methicillin-resistant Staphylococcus aureus (MRSA) infections, pose challenges to clinical therapy due to their low debridement efficiency and relapsing. Molybdenum disulfide (MoS2) is used in the antibacterial field as a classic photothermal agent (NIR-I) with good biocompatibility. However, due to its limited NIR-I tissue penetration ability and single treatment mode, MoS2 has poor therapeutic effects on deep tissue infection. Herein, we prepared a defect-type hybrid 2H-MoS2 nanozyme (MoWS2) using hydrothermal method fabricate the MoWS2 composite, which is a new antibacterial strategy involving photothermal and enzyme catalysis, and further enhances the activity of the nanozyme through overheating. The regulation of 2H-MoS2 defects through tungsten ion doping endows MoWS2 with better near-infrared two-region absorption (NIR-II) and enzyme catalytic performance. Antibacterial activity experiments in vitro have shown that MoWS2 can achieve efficient bactericidal activity and biofilm clearance through hyperthermia and reactive oxygen species (ROS). Deep MRSA infection experiments have shown that MoWS2 rapidly removes bacteria from subcutaneous infected tissues through photothermal therapy (PTT) and chemodynamic therapy (CDT), accelerates the dissipation of abscesses, and promotes the healing of infected wounds. Additionally, the versatile treatment mode of MoWS2 was further confirmed through tissue sectioning and immunofluorescence staining analysis. Overall, these results provide a feasible approach for achieving efficient treatment of deep tissue infections through tungsten ion doping to regulate defective 2H-MoS2. STATEMENT OF SIGNIFICANCE: The photothermal effect of MoS2 nanosheets in the NIR-I (650-900 nm) window in anti-MRSA therapy is considered to be highly reliable and efficient in PTA. However, most of the developed PPT therapies or antimicrobial systems based on PTT therapies developed with 1T-MoS2 have in vivo sterilization temperatures of more than 55°C, which have the risk of damaging the normal tissues of the skin. In this study, we prepared W@MoS2 with a good photothermal effect (36.9%) in the NIR-II window and good peroxidase-like activity. The combined effect of PTT and CDT has a stronger bactericidal effect while avoiding high-temperature damage, which makes the W@MoS2 material more advantageous in terms of antimicrobial effect.


Asunto(s)
Antibacterianos , Staphylococcus aureus Resistente a Meticilina , Molibdeno , Infecciones Estafilocócicas , Cicatrización de Heridas , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Molibdeno/química , Molibdeno/farmacología , Animales , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/patología , Antibacterianos/farmacología , Antibacterianos/química , Ratones , Disulfuros/química , Disulfuros/farmacología , Rayos Infrarrojos , Biopelículas/efectos de los fármacos , Terapia Fototérmica
16.
ACS Sens ; 9(4): 1992-1999, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38536770

RESUMEN

The construction of assays is capable of accurately detecting cytokeratin-19 (CYFRA 21-1), which is critical for the rapid diagnosis of nonsmall cell lung cancer. In this work, a novel electrochemiluminescence (ECL) immunosensor based on the co-reaction promotion of luminol@Au@Ni-Co nanocages (NCs) as ECL probe by Ti3C2Tx MXene@TiO2-MoS2 hybrids as co-reaction accelerator was proposed to detect CYFRA 21-1. Ni-Co NCs, as a derivative of Prussian blue analogs, can be loaded with large quantities of Au NPs, luminol, and CYFRA 21-1 secondary antibodies due to their high specific surface area. To further improve the sensitivity of the developed ECL immunosensor, Ti3C2Tx MXene@TiO2-MoS2 hybrids were prepared by in situ growth of TiO2 nanosheets on highly conductive Ti3C2Tx MXene, and MoS2 was homogeneously grown on Ti3C2Tx MXene@TiO2 surfaces by the hydrothermal method. Ti3C2Tx MXene@TiO2-MoS2 hybrids possess excellent catalytic performance on the electro-redox of H2O2 generating more O2·- and obtaining optimal ECL intensity of the luminol/H2O2 system. Under the appropriate experimental conditions, the quantitative detection range of CYFRA 21-1 was from 0.1 pg mL-1 to 100 ng mL-1, and the limit of detection (LOD) was 0.046 pg mL-1. The present sensor has a lower LOD with a wider linear range, which provides a new analytical assay for the early diagnosis of small-cell-type lung cancer labels.


Asunto(s)
Antígenos de Neoplasias , Técnicas Biosensibles , Disulfuros , Técnicas Electroquímicas , Oro , Queratina-19 , Mediciones Luminiscentes , Luminol , Molibdeno , Titanio , Queratina-19/sangre , Queratina-19/inmunología , Titanio/química , Luminol/química , Molibdeno/química , Oro/química , Antígenos de Neoplasias/inmunología , Técnicas Electroquímicas/métodos , Humanos , Técnicas Biosensibles/métodos , Mediciones Luminiscentes/métodos , Inmunoensayo/métodos , Disulfuros/química , Límite de Detección , Níquel/química , Cobalto/química , Nanopartículas del Metal/química , Anticuerpos Inmovilizados/inmunología , Anticuerpos Inmovilizados/química
17.
Acta Biomater ; 179: 36-60, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38552760

RESUMEN

Over the years, nanomaterials have been exploited as drug delivery systems and therapeutic agents in cancer treatment. Special emphasis has been placed on structure and shape-mediated drug loading and release. Functional materials, including molybdenum disulfide (MoS2), have shown promising results because of their tunable structure and unmatched physicochemical properties. Specifically, easy surface functionalization and high drug adsorption ability make them ideal candidates. Although the large surface area of nanosheets/nanoflakes may result in high drug loading, the encapsulation efficiency is better for MoS2 nanoflower structures. Due to its high targeting abilities, the loading of chemotherapeutic drugs onto MoS2 may minimize nonspecific cellular death and undesired side effects. Furthermore, due to their strong light-absorption ability, MoS2 nanostructures have been widely exploited as photothermal and photodynamic therapeutic agents. The unexplored dimensions of cancer therapy, including chemodynamic (Fenton-like reaction) and piezo-catalytic (ultrasound-mediated reactive oxygen generation), have been recently unlocked, in which the catalytic properties of MoS2 are utilized to generate toxic free radicals to eliminate cancer. Intriguingly, combining these therapeutic modalities often results in high therapeutic efficacy at low doses and minimizes side effects. With a plethora of recent studies, a thorough analysis of current findings is crucial. Therefore, this review discusses the major advances in this field of research. A brief commentary on the limitations/future outlook/ethical issues of the clinical translation of MoS2-mediated cancer treatments is also deliberated. Overall, in our observations, the MoS2-based nanoformulations hold great potential for future cancer therapy applications. STATEMENT OF SIGNIFICANCE: Development of nanomedicines based on MoS2 has opened new avenues in cancer treatment. The MoS2 with different morphologies (nanosheet/nanoflower/QDs) has shown promising results in controlled and targeted drug delivery, leading to minimized side effects and increased therapeutic efficacy. While existing reviews have primarily focused on the optical/thermal properties utilized in photodynamic/photothermal therapy, the outstanding catalytic properties of MoS2 utilized in cancer therapies (chemodynamic/piezo-catalytic) are often overlooked. This review critically highlights and praises/criticizes individual articles reporting the MoS2-based nanoplatforms for cancer therapy applications. Additionally, MoS2-based combined therapies for synergistic effects are discussed. Furthermore, a brief commentary on the future prospects for clinical translations is also deliberated, which is appealing to various research communities engaged in cancer theranostics and biomedical sciences research.


Asunto(s)
Antineoplásicos , Disulfuros , Portadores de Fármacos , Molibdeno , Neoplasias , Molibdeno/química , Humanos , Disulfuros/química , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Portadores de Fármacos/química , Animales , Sistemas de Liberación de Medicamentos , Nanoestructuras/química , Nanoestructuras/uso terapéutico , Nanopartículas/química , Nanopartículas/uso terapéutico
18.
Front Public Health ; 12: 1203381, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38444437

RESUMEN

Background: Twin growth discordance is one of the leading causes of perinatal mortality in twin pregnancies. Whether prenatal exposure to heavy metals and trace elements is associated with twin growth discordance has not been studied yet. Objective: To evaluate the prenatal level of heavy metals and trace elements in twin pregnancy and its relationship with twin growth discordance. Methods: This study involving 60 twin pairs and their mothers was conducted in Zhejiang Province, China, in 2020-2021. The concentration of heavy metals and trace elements in maternal blood, umbilical cord, and placenta were collected at delivery and measured by inductively coupled plasma tandem mass spectrometer. The association of prenatal level with twin growth discordance was evaluated using conditional logistic regression. Results: High levels of heavy metal elements (thallium in maternal blood and umbilical cord blood of larger twins, vanadium in the placenta of larger twins) and trace elements (iodine in the placenta of larger twins) during pregnancy, as well as low levels of heavy metal elements (strontium in the umbilical cord blood of larger twins, strontium and chromium in the umbilical cord blood of smaller twins, strontium in the placenta of larger twins, molybdenum and lead in the placenta of smaller twins and difference of molybdenum in the placenta of twins), are associated with intertwin birthweight discordance. Univariate regression analyses showed a significant effect of gestational age at delivery and eleven trace element data on intertwin birthweight discordance. Multivariable logistic regression analysis with transformed variables as dichotomous risk factors combined with baseline demographic characteristics showed Tl in maternal blood as an independent risk factor. The model constructed by combining Tl in maternal blood (OR = 54.833, 95% CI, 3.839-83.156) with the gestational week (OR = 0.618, 95% CI, 0.463-0.824) had good predictive power for intertwin birthweight discordance (AUC = 0.871). The sensitivity analysis results indicate that the effect of maternal blood thallium on intertwin birthweight discordance is stable and reliable. Conclusion: To our knowledge, ours is the first case-control study to investigate the association between elevated maternal thallium levels before delivery and twin growth discordance.


Asunto(s)
Metales Pesados , Oligoelementos , Femenino , Humanos , Embarazo , Peso al Nacer , Estudios de Casos y Controles , Molibdeno , Madres , Mujeres Embarazadas , Estroncio , Talio
19.
Mar Pollut Bull ; 201: 116201, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38457876

RESUMEN

The objective of this study is to assess the effect of petrochemical effluent on heavy metal pollutant in the Musa Estuary ecosystem in the North-western region of the Persian Gulf, through numerical modeling. The outfall of 30 petrochemical plants poses a potential threat to the estuary's seawater and sediment quality, environment, and public health. A combined hydrodynamic and ecologic modeling framework is applied to predict the spatial distribution of BOD and hazardous heavy metals in this estuary. MIKE 21 Flow Model (FM) CFD software is applied to simulate the tidal waves hydrodynamics, next to applying the MIKE ECO Lab models to predict the distribution of BOD and heavy metals in ambient water. The accuracy of the modeling framework is validated against measured water level, current speed, and water quality data. The results reveal that the level of lead concentration corresponds with the national standard, while the BOD, arsenic, molybdenum and vanadium exceed the limit in some areas, particularly in the tidal zone. The optimal outlet locations that effectively meet the standard concentrations of the heavy metals in the ambient water of the estuary are determined. The results confirm that the new outlet configuration corresponds with the standards: 0.198 µg/L for arsenic concentrations, 0.182 µg/L for molybdenum, 1.530 µg/L for vanadium, and 1.132 mg/L for BOD, at maximum. This study contributes to the perception of estuarine dynamics and provides practical implications for estuarine sustainable management and pollution control.


Asunto(s)
Arsénico , Metales Pesados , Contaminantes Químicos del Agua , Ecosistema , Monitoreo del Ambiente/métodos , Estuarios , Sedimentos Geológicos , Metales Pesados/análisis , Molibdeno , Medición de Riesgo , Vanadio , Contaminantes Químicos del Agua/análisis , Calidad del Agua
20.
Int J Biol Macromol ; 265(Pt 2): 130519, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38553393

RESUMEN

Peroxymonosulfate (PMS), which is dominated by non-free radical pathway, has a good removal effect on organic pollutants in complex water matrices. In this article, a biodegradable cobalt-based catalyst (Co3O4/MoS2@NCS) was synthesized by a simple hydrothermal method with chitosan (CS) as nitrogen­carbon precursor and doped with Cobaltic­cobaltous oxide (Co3O4) and Molybdenum disulfide (MoS2), and was used to activate PMS to degrade dye wastewater. Electrochemical tests showed that Co3O4/MoS2@NCS exhibited higher current density and cycling area than MoS2@NCS and MoS2. In the Co3O4/MoS2@NCS/PMS system, the degradation rate of 30 mg·L-1 rhodamine B (RhB) reached 97.75 % within 5 min, and kept as high as 94.34 % after 5 cycles. Its rate constant was 1.91 and 8.37 times that of MoS2@NCS/PMS and MoS2/PMS, respectively. It had good complex background matrices and acid-base anti-interference ability, and had good universality and reusability. The degradation rate of methyl orange (MO) and methylene blue (MB) were more than 91 % within 5 min at pH 4.8. The experimental results demonstrated that MoS2-modified CS as a carrier exposed a large number of active sites, which not only dispersed Co3O4 nanoparticles and improved the stability of the catalyst, but also provided abundant electron rich groups, and promoted the activation of PMS and the production of reactive oxygen species (ROS). PMS was effectively activated by catalytic sites (Co3+/Co2+, Mo4+/Mo5+/Mo6+, CO, pyridine N, pyrrole N, hydroxyl group and unsaturated sulfur), producing a large number of radicals that attack RhB molecules, causing chromophore cleavage, ring opening, and mineralization. Among them, non-free radical 1O2 was the main ROS for RhB degradation. This work is expected to provide a new idea for the design and synthesis of environmentally friendly and efficient MoS2-modified cobalt-based catalysts.


Asunto(s)
Carbono , Quitosano , Óxidos , Peróxidos , Carbono/química , Especies Reactivas de Oxígeno/química , Molibdeno/química , Cobalto/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...